Contact Us

Paper Published by Atmosphere

News | Posted on June 23, 2025, Monday, 11:42 AM |

Title: Carbon Flux Estimation for Potato Production: A Literature-Based Study

Journal: Atmosphere

DOI: https://doi.org/10.3390/atmos16070764

Abstract: This study reviews and synthesizes published data to estimate the net carbon flux associated with the complete potato production process. It identifies the key components that contribute to this flux and explores potential mitigation strategies, including both cultivation and post-harvest storage. Data were compiled from field-scale studies (primarily using eddy covariance) and life cycle assessment studies. The results indicate that potato production can act as a carbon sink or a carbon source, depending on the production scenario. In Scenario 1, which represents the worst-case scenario, potato production acts as a carbon source, with a carbon flux of 13,874.816 kg CO2 eq ha−1 season−1. In contrast, in Scenario 2, the best-case scenario, potato production acts a carbon sink with a carbon flux of −12,830.567 kg CO2 eq ha−1 season−1. Similarly, in Scenario 3, which is the average scenario, potato production acts as a carbon sink, though a minor one, with a carbon flux of −90.703 kg CO2 eq ha−1 season−1. Notably, the growing phase has the most significant impact on potato production’s overall carbon flux, as it is the period in which the highest levels of carbon sequestration and emissions occur. Fertilization is the primary carbon source among all potato production operations, averaging 1219.225 kg CO2 eq ha−1 season−1. Optimizing farming practices, including fertilization, irrigation, tillage methods, and cultivar selection, are essential to enhance carbon sequestration and reduce greenhouse gas emissions. Additionally, further research through controlled experiments is recommended to deepen the understanding of the relationships between various farming factors and carbon flux, ultimately supporting more sustainable potato production practices.

CLISA is the first multi-institutional training program in Canada towards climate smart agriculture to help address the need for HQPs who possess appropriate knowledge and expertise in climate change, precision agriculture, water and soil management, sustainable food production and food value chains, and climate-smart financing and policies to promote the development and application of innovative technologies and strategies in Canadian farming practices.

   The CLISA project is made possible with the financial support from the NSERC CREATE.
© 2025. All rights reserved by the CLISA team.
   The CLISA project is made possible with the financial support from the NSERC CREATE.
© 2025. All rights reserved by the CLISA team.